Substrate and enzyme profile of fast and slow skeletal muscle fibers in rhesus monkeys.
نویسندگان
چکیده
Results from the Russian Cosmos program suggest that the rhesus monkey is an excellent model for studying weightlessness-induced changes in muscle function. Consequently, the purpose of this investigation was to establish the resting levels of selected substrate and enzymes in individual slow- and fast-twitch muscle fibers of the rhesus monkey. A second objective was to determine the effect of an 18-day sit in the Spacelab experiment-support primate facility [Experimental System for the Orbiting Primate (ESOP)]. Muscle biopsies of the soleus and medial gastrocnemius muscles were obtained 1 mo before and immediately after an 18-day ESOP sit. The biopsies were freeze-dried, and individual fibers were isolated and assayed for the substrates glycogen and lactate and for the high-energy phosphates ATP and phosphocreatine. Fiber enzyme activity was also determined for the glycolytic enzymes phosphofructokinase and lactate dehydrogenase (LDH) and for the oxidative markers 3-hydroxyacyl-CoA dehydrogenase (beta-OAC) and citrate synthase. Consistent with other species, the fast type II fibers contained higher glycogen content than did the slow type I fibers. The ESOP sit had no significant effects on the metabolic profile of the slow fibers of either muscle or the fast fibers of the soleus. However, the fast gastrocnemius fibers showed a significant decline in phosphocreatine and an increase in lactate. Also, similar to other species, the fast fibers contained significantly higher LDH activities and lower 3-hydroxyacyl-CoA dehydrogenase activities. For the muscle enzymes, the quantitatively most important effect of the ESOP sit occurred with LDH where activities increased in all fiber types postsit except the slow type I fiber of the medial gastrocnemius.
منابع مشابه
Histochemical characteristics of the masseter and temporalis muscles of the rhesus monkey (Macaca mulatta).
The histochemical characteristics, cross-sectional area and capillary of the skeletal muscle fibers of the anterior and posterior regions of the superficial masseter and the temporalis muscles are described for juvenile and adult rhesus monkeys of both sexes. Slow twitch fatigue resistant (S), fast twitch fatigue resistant (FR) and fast twitch fatigable (FF) fibers were found in varying proport...
متن کاملUrsolic acid induces myoglobin expression and skeletal muscle remodeling in mice
Introduction: Ursolic Acid (UA) is a lipophilic triterpenoid compound, found in large amounts in apple peel. Anabolic effects of UA on the skeletal muscle and the role of this tissue as a key regulator of systematic aging aroused this question in mind whether UA might amend skeletal muscle performances such as myoglobin expression and also whether it switches skeletal muscle fibers from glyc...
متن کاملEffect of progressive resistance exercise on β1 integrin and vinculin protein levels in slow-and fast-twitch skeletal muscles of male rats
Introduction: Skeletal muscle is a flexible and ever changing tissue and the role of costameric proteins in its response to different stimuli is not well defined. The aim of this study was to investigate the effect of progressive resistance exercise on β1 integrin and vinculin proteins in fast and slow twitch skeletal muscles of male rats. Methods: Twelve male Wistar rats (weight: 298±5.2 gr...
متن کاملThe Effect of High and Low-Intensity Interval Training on TRF1 and TRF2 Gene Expression in Slow and Fast-Twitch Skeletal Muscles of C57BL/6 Mice: An Experimental Study
Background and Objectives: The process of chronic diseases and aging is associated with reduced telomere length. The aim of this study was to investigate the effect of high-intensity interval training (HIIT) and low-intensity interval training (LIIT) on telomere repeat binding factor 1 and 2 (TRF1 and TRF2) in Soleus (SOL) muscle as a slow-twitch (ST) and Extensor Digitorum Longus (EDL) muscle ...
متن کاملThe Effect of Intensive Endurance Activity on Myocyte Enhancer Factor 2C Gene Expression of Slow and Fast Twitch Muscles in Male Wistar Rats: An Experimental Study
Background and Objectives: Myocyte enhancer factor 2c activates the genes of the slow-twitch muscle, the muscle which plays role in endurance activity. Therefore, the aim of this study was to evaluate the effect of a program of intensive endurance activity on MEF2c gene expression in fast and slow twitch skeletal muscles in wistar rats. Materials and Methods: In this experimental study, 14 mal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of applied physiology
دوره 86 1 شماره
صفحات -
تاریخ انتشار 1999